
PointcutDoctor: IDE Support for Understanding and
Diagnosing Pointcut Expressions

[AOSD 2007 demonstration proposal]

Lingdong Ye, Kris de Volder
Department of Computer Science

University of British Columbia
201-2336 Main Mall

Vancouver, B.C. V6T 1Z4
604-822-1290

{lintonye, kdvolder}@cs.ubc.ca

ABSTRACT
Writing correct AspectJ pointcuts is hard. This is partly
because of the complexity of the pointcut language and also
partly because it requires understanding how the pointcut
matches across the entire code base.

In this demonstration we present PointcutDoctor, an ex-
tension of AJDT tools which helps developers write correct
pointcuts by providing immediate diagnostic feedback.

PointcutDoctor provides several kinds of information for a
given pointcut. Firstly it shows which join points (shad-
ows) the pointcut matches or doesn’t match. This helps a
developer to verify whether her pointcut is correct. Fur-
thermore, PointcutDoctor also provides an explanation of
why the pointcut matches or does not match a given join
point(shadow). This information helps a developer diag-
nose the cause of problems—unintended matches or failures
to match certain join points—in her pointcut.

1. PROBLEM STATEMENT, MOTIVATION
Pointcuts in general and AspectJ pointcuts in particular are
hard to write. To write a correct pointcut, a developer needs
to understand the subtleties of the pointcut language as well
as how the pointcut matches against various program ele-
ments across her entire code base.

We present PointcutDoctor, an IDE based tool that helps
developers write correct pointcuts by providing them
with easy access to the right kind of information. This
information helps developers by making it easier for them
to:

1. ascertain whether a given pointcut is correct (or not)

2. diagnose and correct problems if and when they are
discovered

Ascertaining that a pointcut is correct in a given code base
means understanding how this pointcut matches join points
across the code base [4]. This requires a global understand-
ing of the code at a level of detail that is not easy to obtain
or remember for developers. Fortunately, developers can be
assisted by IDE-based tools that provide an explicit repre-
sentation of the join points a pointcut matches in a given
code base. AJDT [1] already provides some useful informa-
tion in this regard. However, we claim that AJDT has a kind
of “blind spot”: the information provided by AJDT is insuf-
ficient for a developer to determine a pointcut’s correctness.
We illustrate this problem with a concrete example1:

pointcut threadCreation(Runnable worker)

: call(Thread.new(Runnable)) && args(worker);

Assume that a developer formulated this pointcut to cap-
ture the creation of all Thread instances from an instance
of Runnable. How would the developer know this pointcut
is correct? Since the intention is to capture all creations,
verifying correctness means ascertaining that there are no
accidentally missed creation sites. We argue that AJDT
does not provide the right kind of information for the de-
veloper to make this determination. Indeed, AJDT’s cross
references view only shows which join point shadows pro-
duce join points matched by the pointcut, but it does not
show any explicit information about join points that are not
being matched. This is an important “blind spot” and as
a result the view is rather unhelpful in discovering unin-
tended misses. Indeed, it is hard for a developer to scan a
list of matches and realize that something that should be
there isn’t. However, as our example illustrates, this kind of
determination, is often critical in understanding whether a
pointcut is correct. There are actually 5 Thread constructors
that have a Runnable parameter:

1This example was taken from [5]

Thread(Runnable)

Thread(Runnable, String)

Thread(ThreadGroup, Runnable)

Thread(ThreadGroup, Runnable, String)

Thread(ThreadGroup, Runnable, String, long)

Only calls to the first of these 5 constructors will be matched
by the pointcut. The pointcut is therefore incorrect, fail-
ing to match calls to the other 4. AJDT’s cross references
view provides no explicit information about non-matched
join points and so does not help to discover this important
fact. As a result this bug in the pointcut is likely to go
unnoticed.

Besides the complexity of dealing with pointcut
(mis)matches across an entire code base, another problem
with regard to pointcut writing is the complexity and
subtleties of the pointcut-language semantics itself. Once it
is clear that a pointcut is incorrect, i.e. it unintentionally
matches or misses certain join points, it is often unclear
to developers why a particular join point is (not) being
matched. The AspectJ pointcut language has some sub-
tleties that appear confusing especially to novices. For
example, call pointcut matches calls to methods overrid-
den in subclasses, but does not match any constructors of
subclasses, even if their parameter lists are the same as that
of their super class (appearing as if they are “overridden
constructors”). That is, the example pointcut above will
not match calls to MyThread(Runnable). There are similar
issues for execution pointcuts. This is a typical confusion
that novices are confronted with and ask questions about
on the aspectj-user mailing list[2]. There are other caveats
such as call pointcut only matches according to the static
type of a call join point’s target, constructor and static
method calls don’t have targets, handler doesn’t match
subclasses, args often restricts the parameter pattern in
call or execution pointcut etc. Failing to understand these
subtleties, a developer may find it challenging to diagnose
problems in her pointcuts. A tool that offers an explanation
of why a certain join point is matched or not matched
would be of great assistance. To our knowledge, AJDT only
provides explanations for a couple of cases so far by means
of xlint warning (e.g. Xlint:unmatchedSuperTypeInCall)
when there are suspicious misses.

2. TOOL DESCRIPTION
PointcutDoctor is an extension of AJDT. The user inter-
face of PointcutDoctor is designed to be non-disruptive to
the users already familiar with AJDT. All features are in-
tegrated into the current AJDT user interface without in-
troducing any new views. The existing AJDT interface is
preserved and extended with some additional behavior in a
clean and logical way.

The main point where PointcutDoctor functionality has
been added is in the cross references view. First, the orig-
inal cross references view only displays information about
matched join point shadows. PointcutDoctor extends this
with additional information about “almost” matched join
point shadows. This fixes AJDT’s “blind spot” discussed
earlier. The second extension is a “pointcut explainer”
feature which provides diagnostic information that may be

Figure 1: Almost Matched Virtual Shadows

helpful to developers when they see incorrectly matched or
missed join point shadows in the cross references view. We
next explain each of these extensions in more detail.

2.1 Almost Matched Join Points
As explained earlier, to ascertain that a pointcut is correct
it is often just as important to obtain information about the
join points that it didn’t match as those that it did match.
However, it is impractical in most cases to display all non-
matched join points because there are too many of them.
Our answer to this dilemma is to display information only
about shadows that are “almost” matched. These “almost
matched” join point shadows are computed by a technique
we call pointcut relaxation. The technique is described in
more detail in Section 3.

Figure 1 shows the augmented cross references view and
what information it displays for the pointcut in our moti-
vating example. Notice that this view shows the missed calls
to some of the Thread constructors as “almost matched” join
point shadows. Notice also that some of the almost matched
shadows are marked as “virtual”. Our algorithm produces
virtual shadows for calls to methods that have been declared
but for which no actual calls exist within the code base. The
rationale behind this is that even though such calls do not
exist in the current code base it is likely they will be added
in future versions and a developer should take such poten-
tial join points into account when trying to write “robust”
pointcuts.

2.2 Pointcut Explainer
The purpose of the pointcut explainer is to help develop-
ers diagnose problems with pointcuts when they discover
wrongly matched or missed join point shadows in the cross
references view. When the developer clicks on a shadow in
the cross references view the pointcut explainer provides an
“explanation” by highlighting specific parts of the point-
cut right in the editor. The highlighted parts are those
that are responsible for matching or not matching this join
point shadow. The highlighting uses a color-coding scheme
based on the matching status of the pointcut fragment.
Three highlighting colors are chosen for “Matching” (colored
green), “Mismatching” (colored red) and “Maybe”2(colored

2”Maybe” indicates that matching requires runtime deter-
mination.

Figure 2: Highlighting Explanation

Figure 3: In-place Explanation

yellow). A screenshot is shown in Figure 2.

If the colored highlighting alone is not a sufficient explana-
tion, the developer may elicit more information by hovering
over the highlighted part of the pointcut as shown in Fig-
ure 3 to request an explanation why this particular pointcut
fragment is colored the way it is. By hovering over the
shadow itself reveals a broader explanation about the en-
tire pointcut (shown in Figure 4). The textual explanation
elaborates the causes and tries to educate the user on the
subtleties of AspectJ. The explanations are tailored to the
specific context of the user’s code.

3. UNDERLYING IMPLEMENTATION
TECHNOLOGIES

The current implementation of PointcutDoctor is based on
various modifications to the weaver component of AspectJ
compiler 1.5.2, and extensions to the cross reference view of
AJDT.

Pointcut relaxation: by a process called relaxation, the
original pointcut expression is turned into a series of increas-
ingly more relaxed pointcut expressions which potentially
match more join points than the original one. The relaxed
pointcuts are produced by a number of heuristic rules to
ensure a reasonable selection and ordering of different kinds
of relaxation methods being applied. Without these heuris-
tics, some very broad pointcuts will basically match all join

Figure 4: Full Textual Explanation

points in the code base, which makes the tool less useful,
e.g. if the original pointcut is call(void *.*(..)), and if
we simply relax it by replacing the return type with *, it will
match all call join points. The original matching process of
the weaver is augmented so that the relaxed pointcuts are
matched in parallel to the original pointcut. The correspon-
dence between pointcuts and shadows are then kept for later
use in the explanation algorithm.

Virtual shadows: In some cases, even when a join point
does not exist in the current code base, it is very likely
these join points will occur in the future, e.g. if a method
is declared but not used (this is often the case when using
code libraries). PointcutDoctor is able to detect this case
and identify these “virtual join points” as matched/almost
matched join points. It is implemented by introducing a
group of virtual shadow classes which extend the standard
Shadow abstract class and will be instantiated right after the
related code element is gone through, say, a method declara-
tion. Then these virtual shadows will act almost the same as
other shadows in the matching process, except that they are
not matched against the standard shadow mungers, such as
advices, declares etc. As a future work, this technique can
be further explored and used for improving the robustness
of a pointcut.

Recursive explanation: To explain the reason why a
pointcut doesn’t match (or does match) a join point, a re-
cursive algorithm is devised. The algorithm is based on
an and follows a similar structure to the AspectJ pointcut
matcher, but instead of producing a result of “match/no-
match” for a given shadow it produces an explanation of
the reason for the match. Two kinds of explanations can be
computed. The first is a highlighting (color-mapping) of the
pointcut expression AST and the second is a textual elabora-
tion. The “reason” for a match/no-match is defined as the
set of minimal sufficient conditions that makes a pointcut
expression True, False or Maybe. For example, the reason
call(* Foo.bar(..))&&!call(void *.bar(int)) matches
method-call(void Foo.bar(boolean)) is that
call(* Foo.bar(..)) matches and the parameter list of
call(void *.bar(int)) doesn’t match. The challenge here
is the definition of reason and the fact that the pointcut ex-
pression could consist of &&, || and !. To explain why an
expression matches needs to explain why its sub-expressions

match, or even why they don’t match. The textual expla-
nation is computed and combined in the same manner but
is more heuristics based.

4. WHAT THE AUDIENCE WILL SEE
The demonstration will start with a short presentation in-
troducing the motivation and ideas, followed by a live demo
of the tool being used in typical scenarios for AspectJ de-
velopment. The demo consists of two parts and the features
of PointcutDoctor will be explored incrementally.

The first part will show several short scenarios of a user
making mistakes when writing pointcuts. We will show how
these kind of mistakes can be easily identified using the aug-
mented cross references view and demonstrate the usefulness
of the diagnostic information presented by the explainer to
understand the cause of the problem and make corrections.
The audience will also get a sense that PointcutDoctor re-
quires minimal learning effort assuming that the user is al-
ready familiar with AJDT.

The second part of the demo will show a more comprehen-
sive development task: implementing a specific crosscutting
concern. The display of matched and almost matched join
point shadows, including normal shadows and virtual shad-
ows, and difference kinds of explanations will be demon-
strated, illustrating the usefulness of PointcutDoctor in a
typical software development context.

5. RELATED WORK AND UNIQUENESS
OF THE TOOL

In the current version of AJDT, only matched join
points are shown for advices. Some xlint warnings(e.g.
Xlint:unmatchedSuperTypeInCall) are provided for explain-
ing several cases of suspicious misses. A series of explanation
related tasks are planned in AJDT project (e.g. Pointcut
Reader).

PCDiff [3][6] tracks and presents the difference a pointcut
matches before and after a change made to the code base,
while our work focuses on helping developers write correct
and robust pointcuts rather than on tracking the impact of
changes to the code over time. Tools like PCDiff are com-
plementary to PointcutDoctor and it would be interesting
to try to combine their functionalities in a single integrated
tool.

As far as we know, there is no existing work with regard to
presenting join points that are not matched by the pointcut,
and explaining why a specific join point shadow is (not)
matched by a pointcut.

6. HARDWARE AND PRESENTATION RE-
QUIREMENTS

This demonstration does not require any special hardware
other than a projector and a screen. The presenter will come
with a laptop prepared for the talk.

7. REFERENCES
[1] Ajdt: Aspectj development tools.

http://www.eclipse.org/ajdt.

[2] Aspectj users mailing list archive.
http://dev.eclipse.org/mhonarc/lists/aspectj-
users/maillist.html.

[3] M. S. C. Koppen. Pcdiff: Attacking the fragile pointcut
problem. European Interactive Workshop on Aspects in
Software, 2004.

[4] G. Kiczales and M. Mezini. Aspect-oriented
programming and modular reasoning. In ICSE ’05:
Proceedings of the 27th international conference on
Software engineering, pages 49–58, 2005.

[5] R. Laddad. AspectJ in Action: Practical
Aspect-Oriented Programming. Manning Publications
Co., Greenwich, CT, USA, 2003.

[6] M. Stoerzer and J. Graf. Using pointcut delta analysis
to support evolution of aspect-oriented software. In
ICSM ’05: Proceedings of the 21st IEEE International
Conference on Software Maintenance (ICSM’05), pages
653–656, Washington, DC, USA, 2005. IEEE Computer
Society.

